Loop closure detection of visual SLAM based on variational autoencoder

Author:

Song Shibin,Yu Fengjie,Jiang Xiaojie,Zhu Jie,Cheng Weihao,Fang Xiao

Abstract

Loop closure detection is an important module for simultaneous localization and mapping (SLAM). Correct detection of loops can reduce the cumulative drift in positioning. Because traditional detection methods rely on handicraft features, false positive detections can occur when the environment changes, resulting in incorrect estimates and an inability to obtain accurate maps. In this research paper, a loop closure detection method based on a variational autoencoder (VAE) is proposed. It is intended to be used as a feature extractor to extract image features through neural networks to replace the handicraft features used in traditional methods. This method extracts a low-dimensional vector as the representation of the image. At the same time, the attention mechanism is added to the network and constraints are added to improve the loss function for better image representation. In the back-end feature matching process, geometric checking is used to filter out the wrong matching for the false positive problem. Finally, through numerical experiments, the proposed method is demonstrated to have a better precision-recall curve than the traditional method of the bag-of-words model and other deep learning methods and is highly robust to environmental changes. In addition, experiments on datasets from three different scenarios also demonstrate that the method can be applied in real-world scenarios and that it has a good performance.

Publisher

Frontiers Media SA

Reference34 articles.

1. NetVLAD: CNN architecture for weakly supervised place recognition;Arandjelovic,2016

2. Role of deep learning in loop closure detection for visual and lidar slam: a survey;Arshad;Sensors,2021

3. Surf: speeded up robust features;Bay;Lect. Notes Comput. Sci.,2006

4. Representation learning: a review and new perspectives;Bengio;Trans. Pattern Anal. Mach. Intell,2013

5. COCO-stuff: thing and stuff classes in context;Caesar,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3