Role of Deep Learning in Loop Closure Detection for Visual and Lidar SLAM: A Survey

Author:

Arshad Saba,Kim Gon-WooORCID

Abstract

Loop closure detection is of vital importance in the process of simultaneous localization and mapping (SLAM), as it helps to reduce the cumulative error of the robot’s estimated pose and generate a consistent global map. Many variations of this problem have been considered in the past and the existing methods differ in the acquisition approach of query and reference views, the choice of scene representation, and associated matching strategy. Contributions of this survey are many-fold. It provides a thorough study of existing literature on loop closure detection algorithms for visual and Lidar SLAM and discusses their insight along with their limitations. It presents a taxonomy of state-of-the-art deep learning-based loop detection algorithms with detailed comparison metrics. Also, the major challenges of conventional approaches are identified. Based on those challenges, deep learning-based methods were reviewed where the identified challenges are tackled focusing on the methods providing long-term autonomy in various conditions such as changing weather, light, seasons, viewpoint, and occlusion due to the presence of mobile objects. Furthermore, open challenges and future directions were also discussed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LGD: A fast place recognition method based on the fusion of local and global descriptors;Expert Systems with Applications;2024-10

2. Adaptive Feature Refinement and Weighted Similarity for Deep Loop Closure Detection in Appearance Variation;Applied Sciences;2024-07-18

3. Development of vision–based SLAM: from traditional methods to multimodal fusion;Robotic Intelligence and Automation;2024-07-09

4. A comprehensive overview of core modules in visual SLAM framework;Neurocomputing;2024-07

5. WAIS: Leveraging WiFi for Resource-Efficient SLAM;Proceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3