A novel brain-computer interface based on audio-assisted visual evoked EEG and spatial-temporal attention CNN

Author:

Chen Guijun,Zhang Xueying,Zhang Jing,Li Fenglian,Duan Shufei

Abstract

ObjectiveBrain-computer interface (BCI) can translate intentions directly into instructions and greatly improve the interaction experience for disabled people or some specific interactive applications. To improve the efficiency of BCI, the objective of this study is to explore the feasibility of an audio-assisted visual BCI speller and a deep learning-based single-trial event related potentials (ERP) decoding strategy.ApproachIn this study, a two-stage BCI speller combining the motion-onset visual evoked potential (mVEP) and semantically congruent audio evoked ERP was designed to output the target characters. In the first stage, the different group of characters were presented in the different locations of visual field simultaneously and the stimuli were coded to the mVEP based on a new space division multiple access scheme. And then, the target character can be output based on the audio-assisted mVEP in the second stage. Meanwhile, a spatial-temporal attention-based convolutional neural network (STA-CNN) was proposed to recognize the single-trial ERP components. The CNN can learn 2-dimentional features including the spatial information of different activated channels and time dependence among ERP components. In addition, the STA mechanism can enhance the discriminative event-related features by adaptively learning probability weights.Main resultsThe performance of the proposed two-stage audio-assisted visual BCI paradigm and STA-CNN model was evaluated using the Electroencephalogram (EEG) recorded from 10 subjects. The average classification accuracy of proposed STA-CNN can reach 59.6 and 77.7% for the first and second stages, which were always significantly higher than those of the comparison methods (p < 0.05).SignificanceThe proposed two-stage audio-assisted visual paradigm showed a great potential to be used to BCI speller. Moreover, through the analysis of the attention weights from time sequence and spatial topographies, it was proved that STA-CNN could effectively extract interpretable spatiotemporal EEG features.

Funder

National Natural Science Foundation of China

Shanxi Scholarship Council of China

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference48 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3