Feature Extraction of Flow Sediment Content of Hydropower Unit Based on Voiceprint Signal

Author:

Xiao Boyi1,Zeng Yun1ORCID,Hu Wenqing2,Cheng Yuesong1

Affiliation:

1. School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

Abstract

The hydropower turbine parts running in the sand-bearing flow will experience surface wear, leading to a decline in the hydropower unit’s stability, mechanical performance, and efficiency. A voiceprint signal-based method is proposed for extracting the flow sediment content feature of the hydropower unit. Firstly, the operating voiceprint information of the hydropower unit is obtained, and the signal is decomposed by the Ensemble Empirical Mode Decomposition (EEMD) algorithm, and a series of intrinsic mode functions (IMFs) are obtained. Combined with correlation analysis, more sensitive IMF components are extracted and input into a convolutional neural network (CNN) for training, and the multi-dimensional output of the fully connected layer of CNN is used as the feature vector. The k-means clustering algorithm is used to calculate the eigenvector clustering center of the hydropower unit with a clean flow state and a high sediment content state, and the characteristic index of the hydropower unit sediment content is constructed based on the Euclidean distance method. We define this characteristic index as SI, and the change in the SI value can reflect the degree of sediment content in the flow of the unit. A higher SI value indicates a lower sediment content, while a lower SI value suggests a higher sediment content. Combined with the sediment voiceprint data of the test bench, when the water flow changed from clear water to high sediment flow (1.492 × 105 mg/L), the SI value decreased from 1 to 0.06, and when the water flow with high sediment content returned to clear water, the SI value returned to 1. The experiment proves the effectiveness of the method. The extracted feature index can be used to detect the flow sediment content of the hydropower unit and give early warning in time, so as to improve the maintenance level of the hydropower unit.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference25 articles.

1. Numerical analysis of bucket hydro-abrasive erosion in a Impulse turbines on sediment season;Li;J. Hydroelectr. Eng.,2024

2. A review on silt erosion in hydro turbines;Padhy;Renew. Sustain. Energy Rev.,2008

3. Effect of silt particles on erosion of Turgo impulse turbine blades;Khurana;Int. J. Ambient Energy,2014

4. Continuous measurement of suspended sediment concentration: Technological advancement and future outlook;Rai;Measurement,2015

5. Effect of concentration and size of sediments on hydro-abrasive erosion of Pelton turbine;Rai;Renew. Energy,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3