Weighted residual network for SAR automatic target recognition with data augmentation

Author:

Li Junyu,Peng Cheng

Abstract

IntroductionDecades of research have been dedicated to overcoming the obstacles inherent in synthetic aperture radar (SAR) automatic target recognition (ATR). The rise of deep learning technologies has brought a wave of new possibilities, demonstrating significant progress in the field. However, challenges like the susceptibility of SAR images to noise, the requirement for large-scale training datasets, and the often protracted duration of model training still persist.MethodsThis paper introduces a novel data augmentation strategy to address these issues. Our method involves the intentional addition and subsequent removal of speckle noise to artificially enlarge the scope of training data through noise perturbation. Furthermore, we propose a modified network architecture named weighted ResNet, which incorporates residual strain controls for enhanced performance. This network is designed to be computationally efficient and to minimize the amount of training data required.ResultsThrough rigorous experimental analysis, our research confirms that the proposed data augmentation method, when used in conjunction with the weighted ResNet model, significantly reduces the time needed for training. It also improves the SAR ATR capabilities.DiscussionCompared to existing models and methods tested, the combination of our data augmentation scheme and the weighted ResNet framework achieves higher computational efficiency and better recognition accuracy in SAR ATR applications. This suggests that our approach could be a valuable advancement in the field of SAR image analysis.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3