Open-Set Recognition Model for SAR Target Based on Capsule Network with the KLD

Author:

Jiang Chunyun1,Zhang Huiqiang1,Zhan Ronghui1ORCID,Shu Wenyu1,Zhang Jun1

Affiliation:

1. National Key Laboratory of Automatic Target Recognition, College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

Synthetic aperture radar (SAR) automatic target recognition (ATR) technology has seen significant advancements. Despite these advancements, the majority of research still operates under the closed-set assumption, wherein all test samples belong to classes seen during the training phase. In real-world applications, however, it is common to encounter targets not previously seen during training, posing a significant challenge to the existing methods. Ideally, an ATR system should not only accurately identify known target classes but also effectively reject those belonging to unknown classes, giving rise to the concept of open set recognition (OSR). To address this challenge, we propose a novel approach that leverages the unique capabilities of the Capsule Network and the Kullback-Leibler divergence (KLD) to distinguish unknown classes. This method begins by deeply mining the features of SAR targets using the Capsule Network and enhancing the separability between different features through a specially designed loss function. Subsequently, the KLD of features between a testing sample and the center of each known class is calculated. If the testing sample exhibits a significantly larger KLD compared to all known classes, it is classified as an unknown target. The experimental results of the SAR-ACD dataset demonstrate that our method can maintain a correct identification rate of over 95% for known classes while effectively recognizing unknown classes. Compared to existing techniques, our method exhibits significant improvements.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3