A mutation operator self-adaptive differential evolution particle swarm optimization algorithm for USV navigation

Author:

Gong Yuehong,Zhang Shaojun,Luo Min,Ma Sainan

Abstract

To keep the global search capability and robustness for unmanned surface vessel (USV) path planning, an improved differential evolution particle swarm optimization algorithm (DePSO) is proposed in this paper. In the optimization process, approach to optimal value in particle swarm optimization algorithm (PSO) and mutation, hybridization, selection operation in differential evolution algorithm (DE) are combined, and the mutation factor is self-adjusted. First, the particle population is initialized and the optimization objective is determined, the individual and global optimal values are updated. Then differential variation is conducted to produces new variables and cross over with the current individual, the scaling factor is adjusted adaptively with the number of iterations in the mutation process, particle population is updated according to the hybridization results. Finally, the convergence of the algorithm is determined according to the decision standard. Numerical simulation results show that, compared with conventional PSO and DE, the proposed algorithm can effectively reduce the path intersection points, and thus greatly shorten the overall path length.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3