Education robot object detection with a brain-inspired approach integrating Faster R-CNN, YOLOv3, and semi-supervised learning

Author:

Hong Qing,Dong Hao,Deng Wei,Ping Yihan

Abstract

The development of education robots has brought tremendous potential and opportunities to the field of education. These intelligent machines can interact with students in classrooms and learning environments, providing personalized educational support. To enable education robots to fulfill their roles, they require accurate object detection capabilities to perceive and understand the surrounding environment of students, identify targets, and interact with them. Object detection in complex environments remains challenging, as classrooms or learning scenarios involve various objects, backgrounds, and lighting conditions. Improving the accuracy and efficiency of object detection is crucial for the development of education robots. This paper introduces the progress of an education robot's object detection based on a brain-inspired heuristic method, which integrates Faster R-CNN, YOLOv3, and semi-supervised learning. By combining the strengths of these three techniques, we can improve the accuracy and efficiency of object detection in education robot systems. In this work, we integrate two popular object detection algorithms: Faster R-CNN and YOLOv3. We conduct a series of experiments on the task of education robot object detection. The experimental results demonstrate that our proposed optimization algorithm significantly outperforms individual algorithms in terms of accuracy and real-time performance. Moreover, through semi-supervised learning, we achieve better performance with fewer labeled samples. This will provide education robots with more accurate perception capabilities, enabling better interaction with students and delivering personalized educational experiences. It will drive the development of the field of education robots, offering innovative and personalized solutions for education.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3