Detection of Liquid Retention on Pipette Tips in High-Throughput Liquid Handling Workstations Based on Improved YOLOv8 Algorithm with Attention Mechanism

Author:

Yin Yanpu1,Lei Jiahui2,Tao Wei2

Affiliation:

1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

High-throughput liquid handling workstations are required to process large numbers of test samples in the fields of life sciences and medicine. Liquid retention and droplets hanging in the pipette tips can lead to cross-contamination of samples and reagents and inaccurate experimental results. Traditional methods for detecting liquid retention have low precision and poor real-time performance. This paper proposes an improved YOLOv8 (You Only Look Once version 8) object detection algorithm to address the challenges posed by different liquid sizes and colors, complex situation of test tube racks and multiple samples in the background, and poor global image structure understanding in pipette tip liquid retention detection. A global context (GC) attention mechanism module is introduced into the backbone network and the cross-stage partial feature fusion (C2f) module to better focus on target features. To enhance the ability to effectively combine and process different types of data inputs and background information, a Large Kernel Selection (LKS) module is also introduced into the backbone network. Additionally, the neck network is redesigned to incorporate the Simple Attention (SimAM) mechanism module, generating attention weights and improving overall performance. We evaluated the algorithm using a self-built dataset of pipette tips. Compared to the original YOLOv8 model, the improved algorithm increased mAP@0.5 (mean average precision), F1 score, and precision by 1.7%, 2%, and 1.7%, respectively. The improved YOLOv8 algorithm can enhance the detection capability of liquid-retaining pipette tips, and prevent cross-contamination from affecting the results of sample solution experiments. It provides a detection basis for subsequent automatic processing of solution for liquid retention.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3