Active Vision for Robot Manipulators Using the Free Energy Principle

Author:

Van de Maele Toon,Verbelen Tim,Çatal Ozan,De Boom Cedric,Dhoedt Bart

Abstract

Occlusions, restricted field of view and limited resolution all constrain a robot's ability to sense its environment from a single observation. In these cases, the robot first needs to actively query multiple observations and accumulate information before it can complete a task. In this paper, we cast this problem of active vision as active inference, which states that an intelligent agent maintains a generative model of its environment and acts in order to minimize its surprise, or expected free energy according to this model. We apply this to an object-reaching task for a 7-DOF robotic manipulator with an in-hand camera to scan the workspace. A novel generative model using deep neural networks is proposed that is able to fuse multiple views into an abstract representation and is trained from data by minimizing variational free energy. We validate our approach experimentally for a reaching task in simulation in which a robotic agent starts without any knowledge about its workspace. Each step, the next view pose is chosen by evaluating the expected free energy. We find that by minimizing the expected free energy, exploratory behavior emerges when the target object to reach is not in view, and the end effector is moved to the correct reach position once the target is located. Similar to an owl scavenging for prey, the robot naturally prefers higher ground for exploring, approaching its target once located.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference64 articles.

1. Active vision;Aloimonos;Int. J. Comput. Vis,1988

2. BealM. J. Variational algorithms for approximate Bayesian inference2003

3. Trends and challenges in robot manipulation;Billard;Science,2019

4. Monet: Unsupervised scene decomposition and representation;Burgess,2019

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3