The use of deep learning technology in dance movement generation

Author:

Liu Xin,Ko Young Chun

Abstract

The dance generated by the traditional music action matching and statistical mapping models is less consistent with the music itself. Moreover, new dance movements cannot be generated. A dance movement generation algorithm based on deep learning is designed to extract the mapping between sound and motion features to solve these problems. First, the sound and motion features are extracted from music and dance videos, and then, the model is built. In addition, a generator module, a discriminator module, and a self-encoder module are added to make the dance movement smoother and consistent with the music. The Pix2PixHD model is used to transform the dance pose sequence into a real version of the dance. Finally, the experiment takes the dance video on the network as the training data and trained 5,000 times. About 80% of the dance data are used as the training set and 20% as the test set. The experimental results show that Train, Valid, and Test values based on the Generator+Discriminator+Autoencoder model are 15.36, 17.19, and 19.12, respectively. The similarity between the generated dance sequence and the real dance sequence is 0.063, which shows that the proposed model can generate a dance more in line with the music. Moreover, the generated dance posture is closer to the real dance posture. The discussion has certain reference value for intelligent dance teaching, game field, cross-modal generation, and exploring the relationship between audio-visual information.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entertainment type robots based on machine learning and game teaching mode applied in dance action planning of art teaching;Entertainment Computing;2025-01

2. Generating diverse dances from music based on GAN;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

3. A Way for Deaf and Hard of Hearing People to Enjoy Music by Exploring and Customizing Cross-modal Music Concepts;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. IoT based Dance Movement Recognition Model based on Deep Learning Framework;Scalable Computing: Practice and Experience;2024-02-24

5. Kelayakan Modul Digital Berbasis Milkshake Untuk Meningkatkan Hasil Belajar;Jurnal Penelitian dan Pengembangan Pendidikan;2023-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3