Toward learning progression analytics — Developing learning environments for the automated analysis of learning using evidence centered design

Author:

Kubsch Marcus,Czinczel Berrit,Lossjew Jannik,Wyrwich Tobias,Bednorz David,Bernholt Sascha,Fiedler Daniela,Strauß Sebastian,Cress Ulrike,Drachsler Hendrik,Neumann Knut,Rummel Nikol

Abstract

National educational standards stress the importance of science and mathematics learning for today’s students. However, across disciplines, students frequently struggle to meet learning goals about core concepts like energy. Digital learning environments enhanced with artificial intelligence hold the promise to address this issue by providing individualized instruction and support for students at scale. Scaffolding and feedback, for example, are both most effective when tailored to students’ needs. Providing individualized instruction requires continuous assessment of students’ individual knowledge, abilities, and skills in a way that is meaningful for providing tailored support and planning further instruction. While continuously assessing individual students’ science and mathematics learning is challenging, intelligent tutoring systems show that it is feasible in principle. However, the learning environments in intelligent tutoring systems are typically not compatible with the vision of how effective K-12 science and mathematics learning looks like. This leads to the challenge of designing digital learning environments that allow for both – meaningful science and mathematics learning and the reliable and valid assessment of individual students’ learning. Today, digital devices such as tablets, laptops, or digital measurement systems increasingly enter science and mathematics classrooms. In consequence, students’ learning increasingly produces rich product and process data. Learning Analytics techniques can help to automatically analyze this data in order to obtain insights about individual students’ learning, drawing on general theories of learning and relative to established domain specific models of learning, i.e., learning progressions. We call this approach Learning Progression Analytics (LPA). In this manuscript, building of evidence-centered design (ECD), we develop a framework to guide the development of learning environments that provide meaningful learning activities and data for the automated analysis of individual students’ learning – the basis for LPA and scaling individualized instruction with artificial intelligence.

Funder

Leibniz-Gemeinschaft

Publisher

Frontiers Media SA

Subject

Education

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3