An application of Bayesian inference to examine student retention and attrition in the STEM classroom

Author:

Bertolini Roberto,Finch Stephen J.,Nehm Ross H.

Abstract

IntroductionAs artificial intelligence (AI) technology becomes more widespread in the classroom environment, educators have relied on data-driven machine learning (ML) techniques and statistical frameworks to derive insights into student performance patterns. Bayesian methodologies have emerged as a more intuitive approach to frequentist methods of inference since they link prior assumptions and data together to provide a quantitative distribution of final model parameter estimates. Despite their alignment with four recent ML assessment criteria developed in the educational literature, Bayesian methodologies have received considerably less attention by academic stakeholders prompting the need to empirically discern how these techniques can be used to provide actionable insights into student performance.MethodsTo identify the factors most indicative of student retention and attrition, we apply a Bayesian framework to comparatively examine the differential impact that the amalgamation of traditional and AI-driven predictors has on student performance in an undergraduate in-person science, technology, engineering, and mathematics (STEM) course.ResultsInteraction with the course learning management system (LMS) and performance on diagnostic concept inventory (CI) assessments provided the greatest insights into final course performance. Establishing informative prior values using historical classroom data did not always appreciably enhance model fit.DiscussionWe discuss how Bayesian methodologies are a more pragmatic and interpretable way of assessing student performance and are a promising tool for use in science education research and assessment.

Publisher

Frontiers Media SA

Subject

Education

Reference187 articles.

1. Explainable AI for data-driven feedback and intelligent action recommendations to support students self-regulation;Afzaal;Front. Artif. Intell.,2021

2. Predicting university’s students performance based on machine learning techniques;Ahmed,2021

3. Information theory and an extension of the maximum likelihood principle;Akaike,1973

4. Employing adaptive learning and intelligent tutoring robots for virtual classrooms and smart campuses: reforming education in the age of artificial intelligence;Alam,2022

5. Framework for automatically suggesting remedial actions to help students at risk based on explainable ML and rule-based models;Albreiki;Int. J. Educ. Technol. High. Educ.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3