Framework for automatically suggesting remedial actions to help students at risk based on explainable ML and rule-based models

Author:

Albreiki BalqisORCID,Habuza Tetiana,Zaki Nazar

Abstract

AbstractHigher education institutions often struggle with increased dropout rates, academic underachievement, and delayed graduations. One way in which these challenges can potentially be addressed is by better leveraging the student data stored in institutional databases and online learning platforms to predict students’ academic performance early using advanced computational techniques. Several research efforts have focused on developing systems that can predict student performance. However, there is a need for a solution that can predict student performance and identify the factors that directly influence it. This paper aims to develop a model that accurately identifies students who are at risk of low performance, while also delineating the factors that contribute to this phenomenon. The model employs explainable machine learning (ML) techniques to delineate the factors that are associated with low performance and integrates rule-based model risk flags with the developed prediction system to improve the accuracy of performance predictions. This helps low-performing students to improve their academic metrics by implementing remedial actions that address the factors of concern. The model suggests proper remedial actions by mapping the students’ performance in each identified checkpoint with the course learning outcomes (CLOs) and topics taught in the course. The list of possible actions is mapped to this checkpoint. The developed model can accurately distinguish students at risk (total grade $$< 70\%$$ < 70 % ) from students with good performance. The Area under the ROC Curve (AUC ROC) of binary classification model fed with four checkpoints reached 1.0. Proposed framework may aid the student to perform better, increase the institution’s effectiveness and improve their reputations and rankings.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Education

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3