Predicting Math Student Success in the Initial Phase of College With Sparse Information Using Approaches From Statistical Learning

Author:

Kilian Pascal,Loose Frank,Kelava Augustin

Abstract

In math teacher education, dropout research relies mostly on frameworks which carry out extensive variable collections leading to a lack of practical applicability. We investigate the completion of a first semester course as a dropout indicator and thereby provide not only good predictions, but also generate interpretable and practicable results together with easy-to-understand recommendations. As proof-of-concept, a sparse feature space together with machine learning methods is used for prediction of dropout, wherein the most predictive features have to be identified. Interpretability can be reached by introducing risk groups for the students. Implications for interventions are discussed.

Publisher

Frontiers Media SA

Subject

Education

Reference45 articles.

1. Scaling methodology and procedures for the mathematics and science scales;Adams;TIMSS Tech. Rep.,1997

2. Predicting academic success in higher education: literature review and best practices;Alyahyan;Int. J. Educ. Technol. Higher Educ.,2020

3. Dropouts and turnover: The synthesis and test of a causal model of student attrition;Bean;Res. Higher Educ.,1980

4. The application of a model of turnover in work organizations to the student attrition process;Bean;Rev. Higher Educ.,1983

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3