Concept mapping and conceptual change texts: a constructivist approach to address the misconceptions in nanoscale science and technology

Author:

Naeem Sarwar Muhammad,Shahzad Asif,Ullah Zaka,Raza Shahid,Wasti Shahbaz Hassan,Shrahili Mansour,Elbatal Ibrahim,Kulsoom Sumaira,Qaisar Shahzada,Faizan Nazar Muhammad

Abstract

Nanoscale Science and Technology (NST) is a rapidly evolving field with profound implications for various industries and our everyday lives. However, misconceptions among learners can hinder their ability to grasp the fundamental concepts of NST, thereby impeding their potential contributions to this advancing domain. Concept maps (CM) and conceptual change texts (CCT) are graphical and written representations of knowledge that enable learners to visualize relationships between concepts and assess the coherence of their understanding. In this pursuit, we engage with the concept of rehabilitation for misconceptions, viewing the learning process as a transformative journey akin to cognitive rehabilitation. Through this CM-CCT constructivist approach, learners are encouraged to engage in critical reflection, self-questioning, and peer discussions, which facilitate the identification of misconceptions. Moreover, CM-CCT provide a structured framework for presenting accurate information about NST, offering a clear depiction of the hierarchical and interconnected nature of nanoscale phenomena. The aim of this study was to evaluate the effectiveness of CM-CCT in correcting the misconceptions of undergraduate university students regarding nanotechnology and the taxonomy of nonmaterial. Prior to the implementation of the CM-CCT, an assessment of pre-existing knowledge of the students was performed through the structure of the observed learning outcomes (SOLO) taxonomy. A quasi-experimental research design was carried out. A total of 70 undergraduate university students, divided into two intact groups, were cross-examined for the study. Further, before and after the instructional tools, an achievement test based on nanotechnology and classification of nonmaterial was conducted, covering all six cognitive domains of the Bloom taxonomy of educational objectives. Data analysis revealed that the instructional tools based on constructivist approach had a statistically significant impact on students for elimination of their misconceptions about nanotechnology, nano science and classification of nonmaterial.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3