Entropy of Co-Enrolment Networks Reveal Disparities in High School STEM Participation

Author:

Turnbull Steven Martin,O’Neale Dion R. J.

Abstract

The current study uses a network analysis approach to explore the STEM pathways that students take through their final year of high school in Aotearoa New Zealand. By accessing individual-level microdata from New Zealand’s Integrated Data Infrastructure, we are able to create a co-enrolment network comprised of all STEM assessment standards taken by students in New Zealand between 2010 and 2016. We explore the structure of this co-enrolment network though use of community detection and a novel measure of entropy. We then investigate how network structure differs across sub-populations based on students’ sex, ethnicity, and the socio-economic-status (SES) of the high school they attended. Results show the structure of the STEM co-enrolment network differs across these sub-populations, and also changes over time. We find that, while female students were more likely to have been enrolled in life science standards, they were less well represented in physics, calculus, and vocational (e.g., agriculture, practical technology) standards. Our results also show that the enrollment patterns of Asian students had lower entropy, an observation that may be explained by increased enrolments in key science and mathematics standards. Through further investigation of differences in entropy across ethnic group and high school SES, we find that ethnic group differences in entropy are moderated by high school SES, such that sub-populations at higher SES schools had lower entropy. We also discuss these findings in the context of the New Zealand education system and policy changes that occurred between 2010 and 2016.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3