Ensemble Machine Learning Approach Improves Predicted Spatial Variation of Surface Soil Organic Carbon Stocks in Data-Limited Northern Circumpolar Region

Author:

Mishra Umakant,Gautam Sagar,Riley William J.,Hoffman Forrest M.

Abstract

Various approaches of differing mathematical complexities are being applied for spatial prediction of soil properties. Regression kriging is a widely used hybrid approach of spatial variation that combines correlation between soil properties and environmental factors with spatial autocorrelation between soil observations. In this study, we compared four machine learning approaches (gradient boosting machine, multinarrative adaptive regression spline, random forest, and support vector machine) with regression kriging to predict the spatial variation of surface (0–30 cm) soil organic carbon (SOC) stocks at 250-m spatial resolution across the northern circumpolar permafrost region. We combined 2,374 soil profile observations (calibration datasets) with georeferenced datasets of environmental factors (climate, topography, land cover, bedrock geology, and soil types) to predict the spatial variation of surface SOC stocks. We evaluated the prediction accuracy at randomly selected sites (validation datasets) across the study area. We found that different techniques inferred different numbers of environmental factors and their relative importance for prediction of SOC stocks. Regression kriging produced lower prediction errors in comparison to multinarrative adaptive regression spline and support vector machine, and comparable prediction accuracy to gradient boosting machine and random forest. However, the ensemble median prediction of SOC stocks obtained from all four machine learning techniques showed highest prediction accuracy. Although the use of different approaches in spatial prediction of soil properties will depend on the availability of soil and environmental datasets and computational resources, we conclude that the ensemble median prediction obtained from multiple machine learning approaches provides greater spatial details and produces the highest prediction accuracy. Thus an ensemble prediction approach can be a better choice than any single prediction technique for predicting the spatial variation of SOC stocks.

Funder

Argonne National Laboratory

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3