A Predictive Maintenance Model for Flexible Manufacturing in the Context of Industry 4.0

Author:

Sang Go Muan,Xu Lai,de Vrieze Paul

Abstract

The Industry 4.0 paradigm is the focus of modern manufacturing system design. The integration of cutting-edge technologies such as the Internet of things, cyber–physical systems, big data analytics, and cloud computing requires a flexible platform supporting the effective optimization of manufacturing-related processes, e.g., predictive maintenance. Existing predictive maintenance studies generally focus on either a predictive model without considering the maintenance decisions or maintenance optimizations based on the degradation models of the known system. To address this, we propose PMMI 4.0, a Predictive Maintenance Model for Industry 4.0, which utilizes a newly proposed solution PMS4MMC for supporting an optimized maintenance schedule plan for multiple machine components driven by a data-driven LSTM model for RUL (remaining useful life) estimation. The effectiveness of the proposed solution is demonstrated using a real-world industrial case with related data. The results showed the validity and applicability of this work.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Reference70 articles.

1. Hybrid Deep Neural Network Model for Remaining Useful Life Estimation;Al-Dulaimi,2019

2. Using Artificial Neural Networks for the Prediction of Dimensional Error on Inclined Surfaces Manufactured by ball-end Milling;Arnaiz-González;Int. J. Adv. Manufacturing Technology,2016

3. Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life;Babu,2016

4. Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment;Bagheri;IFAC-PapersOnLine,2015

5. HMMs for Diagnostics and Prognostics in Machining Processes;Baruah;Int. J. Prod. Res.,2005

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3