Application of convex hull analysis for the evaluation of data heterogeneity between patient populations of different origin and implications of hospital bias in downstream machine-learning-based data processing: A comparison of 4 critical-care patient datasets

Author:

Sharafutdinov Konstantin,Bhat Jayesh S.,Fritsch Sebastian Johannes,Nikulina Kateryna,E. Samadi Moein,Polzin Richard,Mayer Hannah,Marx Gernot,Bickenbach Johannes,Schuppert Andreas

Abstract

Machine learning (ML) models are developed on a learning dataset covering only a small part of the data of interest. If model predictions are accurate for the learning dataset but fail for unseen data then generalization error is considered high. This problem manifests itself within all major sub-fields of ML but is especially relevant in medical applications. Clinical data structures, patient cohorts, and clinical protocols may be highly biased among hospitals such that sampling of representative learning datasets to learn ML models remains a challenge. As ML models exhibit poor predictive performance over data ranges sparsely or not covered by the learning dataset, in this study, we propose a novel method to assess their generalization capability among different hospitals based on the convex hull (CH) overlap between multivariate datasets. To reduce dimensionality effects, we used a two-step approach. First, CH analysis was applied to find mean CH coverage between each of the two datasets, resulting in an upper bound of the prediction range. Second, 4 types of ML models were trained to classify the origin of a dataset (i.e., from which hospital) and to estimate differences in datasets with respect to underlying distributions. To demonstrate the applicability of our method, we used 4 critical-care patient datasets from different hospitals in Germany and USA. We estimated the similarity of these populations and investigated whether ML models developed on one dataset can be reliably applied to another one. We show that the strongest drop in performance was associated with the poor intersection of convex hulls in the corresponding hospitals' datasets and with a high performance of ML methods for dataset discrimination. Hence, we suggest the application of our pipeline as a first tool to assess the transferability of trained models. We emphasize that datasets from different hospitals represent heterogeneous data sources, and the transfer from one database to another should be performed with utmost care to avoid implications during real-world applications of the developed models. Further research is needed to develop methods for the adaptation of ML models to new hospitals. In addition, more work should be aimed at the creation of gold-standard datasets that are large and diverse with data from varied application sites.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3