Analysis of Chest X-ray for COVID-19 Diagnosis as a Use Case for an HPC-Enabled Data Analysis and Machine Learning Platform for Medical Diagnosis Support

Author:

Barakat Chadi123ORCID,Aach Marcel12,Schuppert Andreas34ORCID,Brynjólfsson Sigurður1ORCID,Fritsch Sebastian235ORCID,Riedel Morris123ORCID

Affiliation:

1. School of Engineering and Natural Science, University of Iceland, 107 Reykjavik, Iceland

2. Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany

3. SMITH Consortium of the German Medical Informatics Initiative, 07747 Leipzig, Germany

4. Joint Research Centre for Computational Biomedicine, University Hospital RWTH Aachen, 52074 Aachen, Germany

5. Department of Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany

Abstract

The COVID-19 pandemic shed light on the need for quick diagnosis tools in healthcare, leading to the development of several algorithmic models for disease detection. Though these models are relatively easy to build, their training requires a lot of data, storage, and resources, which may not be available for use by medical institutions or could be beyond the skillset of the people who most need these tools. This paper describes a data analysis and machine learning platform that takes advantage of high-performance computing infrastructure for medical diagnosis support applications. This platform is validated by re-training a previously published deep learning model (COVID-Net) on new data, where it is shown that the performance of the model is improved through large-scale hyperparameter optimisation that uncovered optimal training parameter combinations. The per-class accuracy of the model, especially for COVID-19 and pneumonia, is higher when using the tuned hyperparameters (healthy: 96.5%; pneumonia: 61.5%; COVID-19: 78.9%) as opposed to parameters chosen through traditional methods (healthy: 93.6%; pneumonia: 46.1%; COVID-19: 76.3%). Furthermore, training speed-up analysis shows a major decrease in training time as resources increase, from 207 min using 1 node to 54 min when distributed over 32 nodes, but highlights the presence of a cut-off point where the communication overhead begins to affect performance. The developed platform is intended to provide the medical field with a technical environment for developing novel portable artificial-intelligence-based tools for diagnosis support.

Funder

EU

EU HPC Joint Undertaking

EOSC COVID-19 Fast Track

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3