Network Models and Simulation Analytics for Multi-scale Dynamics of Biological Invasions

Author:

Adiga Abhijin,Palmer Nicholas,Baek Young Yun,Mortveit Henning,Ravi S. S.

Abstract

Globalization and climate change facilitate the spread and establishment of invasive species throughout the world via multiple pathways. These spread mechanisms can be effectively represented as diffusion processes on multi-scale, spatial networks. Such network-based modeling and simulation approaches are being increasingly applied in this domain. However, these works tend to be largely domain-specific, lacking any graph theoretic formalisms, and do not take advantage of more recent developments in network science. This work is aimed toward filling some of these gaps. We develop a generic multi-scale spatial network framework that is applicable to a wide range of models developed in the literature on biological invasions. A key question we address is the following: how do individual pathways and their combinations influence the rate and pattern of spread? The analytical complexity arises more from the multi-scale nature and complex functional components of the networks rather than from the sizes of the networks. We present theoretical bounds on the spectral radius and the diameter of multi-scale networks. These two structural graph parameters have established connections to diffusion processes. Specifically, we study how network properties, such as spectral radius and diameter are influenced by model parameters. Further, we analyze a multi-pathway diffusion model from the literature by conducting simulations on synthetic and real-world networks and then use regression tree analysis to identify the important network and diffusion model parameters that influence the dynamics.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Web-Based System for Contagion Simulations on Networked Populations;2022 IEEE 18th International Conference on e-Science (e-Science);2022-10

2. Network Models and Simulation Analytics for Multi-scale Dynamics of Biological Invasions;Frontiers in Big Data;2022-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3