Differential breeding targets in wheat influence non-target traits related to grain quality, but not crop nitrogen requirement

Author:

Guardia-Velarde Lorena,Liu Hui,Cope Jonathan E.,Westerbergh Anna,Weih Martin

Abstract

Wheat is considered an established crop with a long breeding history. Its varieties are being developed with differential breeding targets, e.g. high grain yield or high grain protein content. The different breeding targets strongly influence performance in the targeted traits, but may also influence non-target traits related to grain quality, biofortification potential, and nutrient accumulation. This influence of non-targeted traits may, in turn, affect the environmental performance and ecological sustainability of the crop. The aim of this study was to evaluate the relationships between breeding target traits such as grain yield and grain quality, and non-target traits for three groups of spring wheat varieties differing in breeding targets, i.e. high yield (I), organic high protein (II), and intermediate (III) wheat types. Data from a field trial with nine spring wheat varieties grown under two soil compaction treatments over two years with contrasting weather were used. We found that wheat type affected most target and non-target traits with partly large effect sizes (0.874ηp  20.173), but not nitrogen (N) uptake efficiency ( ηp  2=0.006), which reflects the potential N resource requirement of the crop. Associations shown between target and non-target traits will be advantageous for wheat breeding programs. Wheat type and environment had similarly sized effects on grain yield and quality traits. Grain concentrations of various macro- and micro-nutrients were frequently, but not always, correlated, indicating that the biofortification potential varied between wheat types and was affected by environmental conditions. The grain and starch yields per accumulated plant N were higher in the wheat varieties bred for high grain yields than those bred for high grain protein content; whilst the protein yield per accumulated whole-plant N was similar across all wheat types despite much higher grain N concentrations in the high-protein varieties. Additionally, most of the evaluated traits tended to preserve their static stability across environments. The results link grain yield and grain quality traits to crop nutrient accumulation aspects relevant for the environmental performance and ecological sustainability of the crop. Future breeding strategies should consider the non-target effects in traits that influence the environmental performance of the crop.

Funder

Svenska Forskningsrådet Formas

Publisher

Frontiers Media SA

Subject

Plant Science,Soil Science,Agricultural and Biological Sciences (miscellaneous),Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3