Machine learning approach for predicting bridge components’ condition ratings

Author:

Mia Md. Manik,Kameshwar Sabarethinam

Abstract

Information on bridge condition rating is critical to make decisions regarding rehabilitation or replacement of bridges. Currently, bridge components’ condition ratings are evaluated manually using inspection reports. Markov chain and Petri net models are most commonly used for predicting future values of bridge parameters, however, applicability of these models for a regional or statewide portfolio of bridges may be limited. The existing data based models have low prediction accuracy. Hence, a data and machine learning based approach is presented herein for predicting the future condition values of major components—deck, superstructure and substructure—in a portfolio of bridges with an objective to develop a more accurate approach. National Bridge Inventory (NBI) was used to get information on current and past bridge components’ condition from year 1992–2019 along with other parameters such as ownership, maintenance responsibility and age. After selecting important parameters, this data was used to train three RUSBoost based random forest models for predicting future values of deck, superstructure, and substructure conditions, respectively. The prediction accuracy of the developed models were found above 93%, thereby addressing the limitation of poor prediction accuracy of the existing studies. Additionally, the uncertainties associated with the random forest based predictions were quantified at the regional level and for individual bridges. On-system concrete pre-cast slab units and steel I-beam bridges in Louisiana were selected to demonstrate the proposed approach and predict bridge components condition ratings for years 2020 and 2021.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3