Intelligent condition prediction model for bridge infrastructure based on evaluating machine learning algorithms

Author:

Abu Dabous SalehORCID,Alzghoul AhmadORCID,Ibrahim FakhariyaORCID

Abstract

PurposePrediction models are essential tools for transportation agencies to forecast the condition of bridge decks based on available data, and artificial intelligence is paramount for this purpose. This study aims at proposing a bridge deck condition prediction model by assessing various classification and regression algorithms.Design/methodology/approachThe 2019 National Bridge Inventory database is considered for model development. Eight different feature selection techniques, along with their mean and frequency, are used to identify the critical features influencing deck condition ratings. Thereafter, four regression and four classification algorithms are applied to predict condition ratings based on the selected features, and their performances are evaluated and compared with respect to the mean absolute error (MAE).FindingsClassification algorithms outperform regression algorithms in predicting deck condition ratings. Due to its minimal MAE (0.369), the random forest classifier with eleven features is recommended as the preferred condition prediction model. The identified dominant features are superstructure condition, age, structural evaluation, substructure condition, inventory rating, maximum span length, deck area, average daily traffic, operating rating, deck width, and the number of spans.Practical implicationsThe proposed bridge deck condition prediction model offers a valuable tool for transportation agencies to plan maintenance and resource allocation efficiently, ultimately improving bridge safety and serviceability.Originality/valueThis study provides a detailed framework for applying machine learning in bridge condition prediction that applies to any bridge inventory database. Moreover, it uses a comprehensive dataset encompassing an entire region, broadening the model’s applicability and representation.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3