Investigation of microtremors observed at historic masonry townhouse buildings after Nepal earthquake

Author:

Mukai Yoichi,Hoshino Hayato,Yamamoto Naohiko,Masui Masaya,Miyauchi Anri,Suwal Ram Prasad

Abstract

The Gorkha earthquake in 2015 was a recent large-scale earthquake that caused severe damage to many historic masonry buildings in the Kathmandu Valley, Nepal. The authors conducted a visual inspection survey of seismically damaged buildings after the earthquake in the historic town district of Bhaktapur in the Kathmandu Valley. The first part of this paper reports the distribution of the historic masonry buildings for each damage level in the surveyed area. A concentrating zone of severely-damaged buildings was explicitly found in the damage-level distribution map. Almost half of all the surveyed buildings were severely damaged during the earthquake, and most of these were historic masonry townhouse buildings. In the second part, the ambient vibration characteristics of the conventional historic masonry buildings in Bhaktapur are investigated. Typical dwelling houses in a historic town district in Nepal, which generally formed terraced houses built around a courtyard, were targeted for the measurement. Thus, the influence of adjacent buildings, which makes it difficult to identify the predominant natural frequencies from building vibration measurements, was also observed. Microtremor measurements using two accelerometers were conducted at 11 historic masonry buildings to investigate the discrimination degree for identifying the predominant natural frequency of conventional townhouse buildings. The estimated primary natural frequencies of these buildings were compared with the results of the screening model analysis. The advantages of using the proposed screening model analysis to improve the uncertainty of the first natural frequency identification by the microtremor measurement are discussed. Additional measurements of the microtremors at 4 of the 11 measured buildings were conducted using a different location combination of the two acceleration sensors. The sensors were placed between two different floors, and the transfer functions of each floor were investigated to observe the predominant vibration components on the floors in the entire building. Moreover, the coherence values observing the in-plane correlation of the floor responses were also analyzed for the dataset measured at two points separated on the same floor. Finally, an effective method for measuring the microtremors is discussed to improve the assessment of the vibration characteristics of conventional historic masonry buildings in Nepal.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Reference32 articles.

1. 2015 Nepal earthquake: Seismic performance and post-earthquake reconstruction of stone in mud mortar masonry buildings;Adhikari;Bull. Earthq. Eng.,2020

2. Analytical approach to seismic evaluation of a historical masonry building – tabriz bazaar in Iran;Ahari,2011

3. Modal parameter identification of hagia sophia bell-tower via ambient vibration test;Bayraktar;J. Nondestruct. Eval.,2009

4. Damage to cultural heritage structures and buildings due to the 2015 Nepal Gorkha earthquake;Bhagat;J. Earthq. Eng.,2018

5. Earthquakes in India and the himalaya: Tectonics, geodesy and history;Bilham;Ann. Geophys.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3