Finite Element Modeling of the Dynamic Response of Critical Zones in a Ballasted Railway Track

Author:

Punetha Piyush,Maharjan Krijan,Nimbalkar Sanjay

Abstract

The critical zones are the discontinuities along a railway line that are highly susceptible to differential settlement, due to an abrupt variation in the support conditions over a short span. Consequently, these zones require frequent maintenance to ensure adequate levels of passenger safety and comfort. A proper understanding of the behavior of railway tracks at critical zones is imperative to enhance their performance and reduce the frequency of costly maintenance operations. This paper investigates the dynamic behavior of the critical zone along a bridge-open track transition under moving train loads using two-dimensional finite element approach. The influence of different subgrade types on the track behavior is studied. The effectiveness of using geogrids, wedge-shaped engineered backfill and zone with reduced sleeper spacing in improving the performance of the critical zone is evaluated. The numerical model is successfully validated against the field data reported in the literature. The results indicate that the subgrade soil significantly influences the track response on the softer side of the critical zone. The difference in vertical displacement between the stiffer and the softer side of a track transition decreases significantly with an increase in the strength and stiffness of the subgrade soil. The subgrade layer also influences the contribution of the granular layers (ballast and subballast) to the overall track response. As the subgrade becomes stiffer and stronger, the contribution of the granular layers to the overall track displacement increases. The mitigation techniques that improve the stiffness or strength of granular layers may prove more effective for critical zones with stiff subgrade than critical zones with soft subgrade. Among all the mitigation techniques investigated, the wedge-shaped engineered backfill significantly improved the performance of the critical zone by gradually increasing the track stiffness.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3