Mathematical Model of the Immunopathological Progression of Tuberculosis

Author:

Flores-Garza Eliezer,Zetter Mario A,Hernández-Pando Rogelio,Domínguez-Hüttinger Elisa

Abstract

Tuberculosis is a worldwide persistent infectious disease. It is caused by bacteria from the Mycobacterium tuberculosis complex that mainly affects the lungs and can be fatal. Using an integrative systems biology approach, we study the immunopathological progression of this disease, analyzing the key interactions between the cells involved in the different phases of the infectious process. We integrated multiple in vivo and in vitro data from immunohistochemical, serological, molecular biology, and cell count assays into a mechanistic mathematical model. The ordinary differential equation (ODE) model captures the regulatory interplay between the phenotypic variation of the main cells involved in the disease progression and the inflammatory microenvironment. The model reproduces in vivo time course data of an experimental model of progressive pulmonary TB in mouse, accurately reflecting the functional adaptations of the host–pathogen interactions as the disease progresses through three phenotypically different phases. We used the model to assess the effect of genotypic variations (encoded as changes in parameters) on disease outcomes. For all genotypes, we found an all-or-nothing response, where the virtual mouse either completely clears the infection or suffers uncontrolled Tb growth. Results show that it is 84% probable that a mouse submitted to a progressive pulmonary TB assay will end up with an uncontrolled infection. The simulations also showed how the genotypic variations shape the transitions across phases, showing that 100% of the genotypes evaluated eventually progress to phase two of the disease, suggesting that adaptive immune response activation was unavoidable. All the genotypes of the network that avoided progressing to phase 3 cleared the infection. Later, by analyzing the three different phases separately, we saw that the anti-inflammatory genotype of phase 3 was the one with the highest probability of leading to uncontrolled bacterial growth, and the proinflammatory genotype associated with phase 2 had the highest probability of bacterial clearance. Forty-two percent of the genotypes evaluated showed a bistable response, with one stable steady state corresponding to infection clearance and the other one to bacteria reaching its carrying capacity. Our mechanistic model can be used to predict the outcomes of different experimental conditions through in silico assays.

Funder

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos Del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3