Author:
Flores-Garza Eliezer,Hernández-Pando Rogelio,García-Zárate Ibrahim,Aguirre Pablo,Domínguez-Hüttinger Elisa
Abstract
AbstractTuberculosis (TB) is a major cause of morbidity and mortality worldwide. The emergence and rapid spread of drug-resistant M. tuberculosis strains urge us to develop novel treatments. Experimental trials are constrained by laboratory capacity, insufficient funds, low number of laboratory animals and obsolete technology. Systems-level approaches to quantitatively study TB can overcome these limitations. Previously, we proposed a mathematical model describing the key regulatory mechanisms underlying the pathological progression of TB. Here, we systematically explore the effect of parameter variations on disease outcome. We find five bifurcation parameters that steer the clinical outcome of TB: number of bacteria phagocytosed per macrophage, macrophages death, macrophage killing by bacteria, macrophage recruitment, and phagocytosis of bacteria. The corresponding bifurcation diagrams show all-or-nothing dose–response curves with parameter regions mapping onto bacterial clearance, persistent infection, or history-dependent clearance or infection. Importantly, the pathogenic stage strongly affects the sensitivity of the host to these parameter variations. We identify parameter values corresponding to a latent-infection model of TB, where disease progression occurs significantly slower than in progressive TB. Two-dimensional bifurcation analyses uncovered synergistic parameter pairs that could act as efficient compound therapeutic approaches. Through bifurcation analysis, we reveal how modulation of specific regulatory mechanisms could steer the clinical outcome of TB.
Funder
CONACyT Ciencia de Frontera 2022
UNAM-PAPIIT
Proyecto Basal CMM-Universidad de Chile
World Premier International Research Center Initiative (WPI), MEXT, Japan
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献