Based on a Decision Tree Model for Exploring the Risk Factors of Smartphone Addiction Among Children and Adolescents in China During the COVID-19 Pandemic

Author:

Duan Li,He Juan,Li Min,Dai Jiali,Zhou Yurong,Lai Feiya,Zhu Gang

Abstract

Background: Smartphone addiction has emerged as a major concern among children and adolescents over the past few decades and may be heightened by the outbreak of COVID-19, posing a threat to their physical and mental health. Then we aimed to develop a decision tree model as a screening tool for unrecognized smartphone addiction by conducting large sample investigation in mainland China.Methods: The data from cross-sectional investigation of smartphone addiction among children and adolescents in mainland China (n = 3,615) was used to build models of smartphone addiction by employing logistic regression, visualized nomogram, and decision tree analysis.Results: Smartphone addiction was found in 849 (23.5%) of the 3,615 respondents. According to the results of logistic regression, nomogram, and decision tree analyses, Internet addiction, hours spend on smartphone during the epidemic, levels of clinical anxiety symptoms, fear of physical injury, and sex were used in predictive model of smartphone addiction among children and adolescents. The C-index of the final adjusted model of logistic regression was 0.804. The classification accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and AUC area of decision tree for detecting smartphone addiction were 87.3, 71.4, 92.1, 73.5, 91.4, and 0.884, respectively.Conclusions: It was found that the incidence of smartphone addiction among children and adolescents is significant during the epidemic. The decision tree model can be used to screen smartphone addiction among them. Findings of the five risk factors will help researchers and parents assess the risk of smartphone addiction quickly and easily.

Publisher

Frontiers Media SA

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3