Interactive effects of bismuth exposure (water and diet) and temperature on snail fatty acid composition, antioxidant enzymes and lipid peroxidation

Author:

Fadhlaoui Mariem,Pearce Nolan J. T.,Lavoie Isabelle,Fortin Claude

Abstract

Despite the growing prevalence of Bismuth (Bi), very little research has been carried to assess its potential toxic effects on aquatic organisms. This study aimed to address this gap by investigating the interactive effects of Bi exposure and elevated temperature on freshwater snails of the genus Lymnaea, specifically on their fatty acid (FA) profiles, oxidative stress markers (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST)) and lipid peroxidation (malondialdehyde (MDA) content). Bismuth exposure was introduced through two distinct routes: i) food via Bi-exposed biofilm (grown under 2 μM Bi), and ii) water (2 μM Bi). Exposed snails were maintained at two temperatures, 19°C and 25°C, over a duration of 14 days. Bismuth bioaccumulation occurred in Bi-exposed biofilm concurrently with a pronounced increase in polyunsaturated fatty acids (PUFA), likely as a protective mechanism to preserve cell structure and integrity. Bismuth bioaccumulation also occurred in snails with their FA composition largely reflecting the composition of their dietary source highlighting the direct link between diet and snail FA profiles. Additionally, the antioxidant enzymes studied exhibited diverse responses under Bi exposure and thermal stress, suggesting the induction of oxidative stress in snails. SOD activity increased at 25°C, suggesting a thermal stress. CAT activity remained high under all conditions, unaffected by temperature or Bi exposure. GPx levels increased in snails fed with Bi-laden biofilm, particularly at 19°C. GST activity showed great variability with a significant three-way interaction. The observed elevation in MDA levels among Bi-exposed snails suggested a potential deficiency in their antioxidant enzyme systems, leading to an increased susceptibility to lipid peroxidation. This research highlights the complex interaction between Bi contamination, temperature, and the physiological responses of aquatic organisms, and reveals the need for future research into the environmental impact of Bi in aquatic ecosystems. We further highlight the importance of food for Bi transfer to higher consumers and the importance of considering dietborne exposures in ecotoxicological studies.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3