An Innovative Corn to Silage-Grass-Legume Intercropping System With Oversown Black Oat and Soybean to Silage in Succession for the Improvement of Nutrient Cycling

Author:

Pariz Cristiano Magalhães,Costa Nídia Raquel,Costa Ciniro,Crusciol Carlos Alexandre Costa,de Castilhos André Michel,Meirelles Paulo Roberto de Lima,Calonego Juliano Carlos,Andreotti Marcelo,Souza Daniel Martins de,Cruz Igor Vilela,Longhini Vanessa Zirondi,Protes Verena Micheletti,Sarto Jaqueline Rocha Wobeto,Piza Marina Lais Sabião de Toledo,Melo Verônica Freitas de Paula,Sereia Rodrigo César,Fachiolli Daniele Floriano,Almeida Fabiana Alves de,Souza Luiz Gustavo Moretti de,Franzluebbers Alan Joseph

Abstract

In the context of sustainable tropical agriculture, an innovative corn (Zea maysL.) to silage-grass-legume intercropping system can promotes plant diversity, improves agronomic performance and land-use efficiency, and increases the yield of oversown black oat (Avena strigosaSchreb) and soybean [Glycine max(L.) Merr.] to silage in succession. Thus, during three growing seasons on a Typic Haplorthox in Botucatu, São Paulo State, Brazil, four treatments of a corn to silage production system were implemented in summer/autumn with black oat oversown in winter/spring: (1) corn intercropped with palisade grass (Urochloa brizantha“Marandu”) and black oat overseeded in lines; (2) corn intercropped with palisade grass and black oat overseeded in a broadcast system with superficial incorporation; (3) corn intercropped with palisade grass + pigeon pea [Cajanus cajan(L.) Millsp.] and black oat overseeded in lines; and (4) corn intercropped with palisade grass + pigeon pea and black oat overseeded in a broadcast system with superficial incorporation. During winter/spring, the black oat pastures were grazed by lambs, but results on forage allowance and nutritive value for animal grazing and on animal performance are not reported in the present manuscript. In the fourth growing season, the effect of soybean to silage intercropped with guinea grass (Panicum maximum“Aruana”), with only a residual effect of the four production systems from the previous three growing seasons, was evaluated. Despite greater interspecific competition of palisade grass and pigeon pea intercropped with corn, this more complex system produced better results. Thus, when analyzing this system as a whole, the triple intercrop (corn + pigeon pea + palisade grass) combined with oversown black oat in lines was the most effective option for silage production and for the improvement of other elements of system productivity, such higher surface mulch quantity, leaf nutrient concentrations, and yield of soybean to silage intercropped with guinea grass. This intercrop also generated better nutrient cycling because an increased quantity of nutrients was retained in standing plant residue and surface mulch, which resulted in better land- and nutrient-use efficiency, with an emphasis on nitrogen and potassium.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Agrisus

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3