Insights on Fructans and Resistance of Plants to Drought Stress

Author:

Benkeblia Noureddine

Abstract

Drought, one of the major abiotic stresses affecting plants, is characterized by a decrease of water availability, resulting in a decrease of the water potential (Ψ) of the cells. One of the strategies of plants in resisting to this low Ψ and related stresses is regulating their water-plant relation and the interplay between Ψsolutes and the turgor pressure (Ψp). This regulation avoids the dehydration induced by low Ψ and is resulting from the accumulation of specific molecules which induce higher tolerance to water deficit and also other mechanisms that prevent or repair cell damages. In plants, fructans, the non-structural carbohydrates (NSC), have other physiological functions than carbon reserve. Among these roles, fructans have been implicated in protecting plants against water deficit caused by drought. As an efficient strategy to survive to this abiotic stress, plants synthesize fructans in response to osmotic pressure in order to osmoregulate the cellular flux, therefore, protecting the membrane damage and maintaining Ψp. Although different studies have been conducted to elucidate the mechanisms behind this strategy, still the concept itself is not well-understood and many points remain unclear and need to be elucidated in order to understand the causal relation between water deficit and fructans accumulation during water scarcity. This understanding will be a key tool in developing strategies to enhance crop tolerance to stressful dry conditions, particularly under the changing climate prediction. This review aims to give new insights on the roles of fructans in the response and resistance of plants to water deficit and their fate under this severe environmental condition.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3