Maize metabolomics in relation to cropping system and growing year

Author:

Mattoo Autar K.,Cavigelli Michel A.,Mišić Danijela M.,Gašić Uroš,Maksimović Vuk M.,Kramer Matthew,Kaur Bhavneet,Matekalo Dragana,Nestorović Živković Jasmina,Roberts Daniel P.

Abstract

Maize is important to global food security, being one of the predominant cereals in human and domesticated livestock diets worldwide. Due to the increasing human population, it will be important to not only design cropping systems to increase maize yield and sustainability but also to improve the nutritional quality of maize edible tissues. To determine cropping system impacts on maize grain nutritional content, we sampled grain from conventional and organic maize varieties grown for three growing seasons using five cropping systems. We analyzed the grain using metabolic fingerprinting of methanol extracts with ultra-high performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS), adopting both non-targeted and targeted approaches. The cropping systems are part of a long-term study at the Beltsville Agricultural Research Center in Beltsville, Maryland, and were a three-year conventional no-till rotation (NT), a three-year conventional chisel-till rotation (CT), a two-year organic rotation (Org2), a three-year organic rotation (Org3), and a six-year organic rotation (Org6). Each cropping system had been in place for at least 10 years, allowing specific cropping-system-induced alterations of soil edaphic and microbial properties. Non-targeted metabolic fingerprinting detected a total of 90 compounds, the majority of which were phenolics. Metabolic profiling was further targeted toward 15 phenolics, 1 phytohormone, 7 carbohydrates and 7 organic acids, which were quantified in the maize grain originating from the five cropping systems. Statistical analysis of this subset of quantitative data determined that cropping system can significantly influence levels of certain maize grain metabolites. However, natural impacts (growing year) were substantially greater than cropping system impacts, likely masking or over-riding some cropping system impacts. Additionally, maize cultivar genetics had greater impact than cropping system on the maize grain metabolome and was the greatest “managed” impact on the metabolite profiles. Results indicate that until natural environmental impacts on maize grain metabolite levels are understood and managed, the best approach to reliably increase maize grain nutritional quality is through development of maize cultivars with enhanced nutritional content that are robust to natural environmental influence.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3