Cropping systems and agricultural management strategies affect soil organic carbon dynamics in semi-arid regions

Author:

Gorooei Aram,Aynehband Amir,Rahnama Afrasyab,Gaiser Thomas,Kamali Bahareh

Abstract

IntroductionSoil organic carbon (SOC) dynamic is one of the important factors that directly influence soil properties and quality. In agro-ecosystems, the SOC dynamics are strongly linked to agricultural management practices.MethodsIn this study, we investigated the response of SOC and its fractions to various combination of agricultural management practices based on measurements obtained from an experiment conducted over four growing seasons from 2018 to 2020 in Ahvaz, Iran. The experimental treatments involved three agricultural strategies combined with four crop rotation systems. The agricultural strategies comprised conventional (CON: mineral fertilizer, removal of all crop residues), organic (ORG: organic fertilizer, 30% return of crop residues to the soil), and integrated (INT: mineral/organic fertilizer, 15% return of crop residues) strategies. The crop rotation systems were: fallow-wheat (F-W), corn-wheat (C-W), sesame-wheat (S-W), and mung bean-wheat (B-W). Soil samples were collected from all treatments and SOC, labile-C, and non-labile-C were measured.Results and discussionAfter two years of experiment, no significant improvement was found in SOC of CON strategy (p ≤ 0.05). The ORG and INT strategies contained on average 1.1 and 1.06 times more SOC than the CON strategy, respectively. The value of labile-C was decreased during summer cultivations and increased in the soil samples collected after winter cultivations. However, although the quantity of labile-C in ORG (2 g kg−1) was higher than INT (1.83 g kg−1) and CON (1.87 g kg−1) overall during the experiment time, after the second summer cultivation despite the gradual accumulation of organic matter due to high levels of temperature and humidity, the content in ORG reduced to1.47 g kg−1. In all three agricultural management strategies, the SOC content in the four rotation systems was according to the following descending order B-W (5.7 g kg−1) > C-W (5.29 g kg−1) > S-W (5.23 g kg−1) > F-W (4.52 g kg−1). Therefore, for this region M-W and S-W crop rotation systems are recommended in addition to C-W (which is the most common rotation system). However, crop rotation systems were more beneficial for C-sequestration when combined with organic and inorganic fertilization and crop residue incorporation. This study gives promising results for implementing INT and ORG strategies under long-term cropping systems containing various summer crops in rotation with wheat for improving SOC dynamics in semi-arid regions in Iran.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3