The Effect of Farming Management and Crop Rotation Systems on Chlorophyll Content, Dry Matter Translocation, and Grain Quantity and Quality of Wheat (Triticum aestivum L.) Grown in a Semi-Arid Region of Iran

Author:

Gorooei Aram12ORCID,Gaiser Thomas1ORCID,Aynehband Amir2,Rahnama Afrasyab2,Kamali Bahareh1

Affiliation:

1. Institute for Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany

2. Plant Production and Genetics Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran

Abstract

To find suitable farming management approaches in the semi-arid climate of Iran, we set up an experiment combining three farm management practices with four crop rotation systems over four growing seasons (two winter and two summer seasons), from 2018 to 2020. The three farm management practices comprised: intensive (IF, with inorganic inputs, removal of crop residues from the soil, and weeds chemically controlled), organic (OF, with organic inputs, a return 30% of crop residues in the soil, and weeds mechanically controlled), and integrated (INT, with mineral/organic inputs, return 15% of crop residues to the soil, integrated weed control). The four crop rotation systems were: fallow-wheat (F-W), maize-wheat (M-W), sesame-wheat (S-W), and mung bean-wheat (B-W). Treatment effects were assessed by chlorophyll (Chl) content, photosynthetic parameters, and wheat grain quality and quantity measurements. All management practices from the first to the second year resulted in increases in the total Chl content and post-anthesis photosynthesis (PAP). The total Chl content under INT was improved through a greater increase in Chl-b compared to Chl-a. Dry matter remobilisation (DMR) was higher under INT than under IF. The highest (39) and lowest (23) grain number per spike were obtained in IF under B-W and OF under F-W, respectively. B-W produced the highest grain yield (541.4 g m−2). The protein contents in farming with organic matter inputs were higher than that under IF. INT produced an optimum level of wheat yield despite a 50% reduction in chemical inputs, and this was achieved through the fast absorption of chemical elements at the beginning of growth, and having access—at the grain filling stage—to elements derived from organic matter decomposition, and through the utilisation of DMR. Our results indicate that implementing B-W and S-W under INT is a promising strategy for this region. However, the results need to be further evaluated by long-term experiments.

Funder

Shahid Chamran University of Ahvaz

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3