Pre-Crop and Residue Management Effects on Photosynthesis Efficiency and Grain Yield of Dryland Wheat Genotypes

Author:

Lotfi Ramin1,Golkari Saber2ORCID,Abbasi Amin3,Rahimzadeh Reza1,Mohammadzadeh Arash1ORCID,Pessarakli Mohammad4ORCID

Affiliation:

1. Dryland Agricultural Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Maragheh 5517643511, Iran

2. Department of Genomics, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz 31359-33151, Iran

3. Department of Plant Production and Genetics, Maragheh University, Maragheh 5518779842, Iran

4. School of Plant Science, The University of Arizona, Tucson, AZ 85721, USA

Abstract

To evaluate dryland wheat genotypes’ performance under different pre-crop and residue managements under dryland conditions, a split–split plot experiment based on the RCB design, with three replications, was conducted for two years (2017–2018 and 2018–2019). The site of the study has a long-term average precipitation, temperature, and relative humidity of 376 mm, 9 °C, and 50%, respectively. Wheat–wheat and vetch–wheat cropping systems were considered in the main plots, different wheat and vetch residue levels, including 0, 2, and 4 t ha−1, were located in the subplots, and five dryland wheat genotypes, including Sadra, Hashtroud, Baran, Varan, and Ohadi, were allocated in the sub-sub plots. The results indicated that the leaf chlorophyll content index (CCI) and stomatal conductance (gs) were greater in the vetch–wheat cropping system compared to the wheat monoculture system for all genotypes. The normalized difference vegetation index (NDVI) of the genotypes improved by applying the crop residue. Over two years, the application of crop residues resulted in higher variable fluorescence at the J and I steps, as well as an increase in the photosynthesis performance index (PI). The Varan and Baran genotypes stood out as the superior genotype, exhibiting the highest values in physiological characteristics and grain yield under the application of 4 t ha−1 of vetch residue. The grain-filling rate (GFR) was reduced, while the grain-filling duration (GFD) was increased with increasing the crop residue levels. The enhanced grain yield of the wheat genotypes grown under vetch residue was attributed to factors such as improvement in leave pigments and photosynthetic efficiency, which facilitate longer grain filling duration, with high grain weight. As a result, it is advisable to adopt a vetch–wheat cropping system with a high proportion of crop residue in dryland regions to achieve increased and sustainable wheat production.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3