Stability of crop pollinator occurrence is influenced by bee community composition

Author:

Hutchinson Louise A.,Oliver Tom H.,Breeze Tom D.,Greenwell Matthew P.,Powney Gary D.,Garratt Michael P. D.

Abstract

Bees provide a vital ecosystem service to agriculture by contributing to the pollination of many leading global crops. Human wellbeing depends not only on the quantity of agricultural yields, but also on the stability and resilience of crop production. Yet a broad understanding of how the diversity and composition of pollinator communities may influence crop pollination service has previously been hindered by a scarcity of standardized data. We used outputs from Bayesian occupancy detection models to examine patterns in the inter-annual occupancy dynamics of the bee pollinator communities of four contrasting crops (apples, field bean, oilseed and strawberries) in Great Britain between 1985 and 2015. We compared how the composition and species richness of different crop pollinator communities may affect the stability of crop pollinator occurrence. Across the four crops, we found that the inter-annual occupancy dynamics of the associated pollinator communities tended to be more similar in smaller communities with closely related pollinator species. Our results indicate that crop pollinator communities composed of a small number of closely related bee species show greater variance in mean occupancy compared to crops with more diverse pollinator communities. Lower variance in the occurrence of crop pollinating bee species may lead to more stable crop pollination services. Finally, whilst our results initially indicated some redundancy within most crop pollinator communities, with no, or little, increase in the variance of overall mean occupancy when species were initially removed, this was followed by a rapid acceleration in the variance of crop pollinator occurrence as each crop's bee pollinator community was increasingly depreciated. High inter-annual variations in pollination services have negative implications for crop production and food security. High bee diversity could ensure more stable and resilient crop pollination services, yet current agri-environment schemes predominantly benefit a limited suite of common species. Management may therefore benefit from targeting a wider diversity of solitary species in order to safeguard crop pollination service in the face of increasing environmental change.

Funder

Natural Environment Research Council

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3