Genotype by Environment Interaction on Tropical Maize Hybrids Under Normal Irrigation and Waterlogging Conditions

Author:

Azrai Muhammad,Efendi Roy,Muliadi Ahmad,Aqil Muhammad,Suwarti ,Zainuddin Bunyamin,Syam Amiruddin,Junaedi ,Syah Uswah Trywulan,Dermail Abil,Marwiyah Siti,Suwarno Willy Bayuardi

Abstract

Unpredictable rainfall in the tropics often increases the risk of waterlogging or even flooding in agricultural lands, hindering the efforts to fulfill maize demands. Breeding maize for waterlogging tolerance is necessary yet challenging since performing varietal testing on a set of hybrids might be biased toward the presence of genotype and environment interaction (GEI). This study aimed to elucidate the GEI effects on yield and related agronomic traits of tropical maize hybrids under normal irrigation and waterlogging conditions and to assess the adaptability of these hybrids in such conditions using several stability models. Ten hybrids including two commercial checks were evaluated across 14 environments under normal and waterlogging conditions in Indonesia from 2018 to 2020. Waterlogging imposed at the V6 stage for ten consecutive days significantly hampered the plant height and ear height, slightly delayed flowering dates, and reduced yield and yield components. The genotype, location, and genotype by location effects were significant on yield, but the genotype by waterlogging effect was not. Stress tolerance index is highly significantly correlated (p < 0.01) with yield in both normal (r = 0.90) and waterlogging (r = 0.96) conditions. The GGE biplot analysis on yield revealed five sectors, two mega-environments, and five vertex genotypes. This study indicated the possibility of breeding maize hybrids tolerant to waterlogging (G05), as well as high-yielding hybrids under both conditions (G07).

Funder

Kementerian Riset dan Teknologi /Badan Riset dan Inovasi Nasional

Badan Penelitian dan Pengembangan Pertanian

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3