Durum Wheat Field Performance and Stability in the Irrigated, Dry and Heat-Prone Environments of Sudan

Author:

Tahir Izzat S. A.1ORCID,Elbashier Elfadil M. E.1,Mustafa Hala M.1,Elhashimi Ashraf M. A.2,Abdalla Modather G. A.3,Hassan Mohamed K.14,Saad Abu Sefyan I.1,Elbashir Awad A. E.34,Elsheikh Omer5,Meheesi Sara12

Affiliation:

1. Wheat Research Program, Gezira Research Station, Agricultural Research Corporation (ARC), Wad Medani P.O. Box 126, Sudan

2. Hudeiba Research Station, Agricultural Research Corporation (ARC), Ad-Damar P.O. Box 31, Sudan

3. Dongola Research Station, Agricultural Research Corporation (ARC), Dongola P.O. Box 35, Sudan

4. New Halfa Research Station, Agricultural Research Corporation (ARC), New Halfa P.O. Box 17, Sudan

5. New Hamdab Research Station, Agricultural Research Corporation (ARC), New Hamdab, Sudan

Abstract

Developing climate-resilient crop varieties with better performance under variable environments is essential to ensure food security in a changing climate. This process is significantly influenced, among other factors, by genotype × environment (G × E) interactions. With the objective of identifying high-yielding and stable genotypes, 20 elite durum wheat lines were evaluated in 24 environments (location–season combination) during 5 crop seasons (2010/11–2014/15). The REML (residual maximum likelihood)-predicted means of grain yield of 16 genotypes that were common across all environments ranged from 3522 kg/ha in G201 to 4132 kg/ha in G217. Results of additive main effect and multiplicative interaction (AMMI) analysis showed that genotypes (G), environments (E), and genotype × environment interaction (GEI) significantly affected grain yield. From the total sum of squares due to treatments (G + E + GEI), E attributed the highest proportion of the variation (90.0%), followed by GEI (8.7%) and G (1.3%). Based on the first four AMMI selections for grain yield in the 24 environments, genotypes G217, G219, G211, and G213 were selected in 23, 12, 11, and 9 environments, respectively. The genotype and genotype × environment biplot (GGE) biplot polygon view showed that the environments were separated into three mega-environments. The winning genotypes in these mega-environments were G217, G214, and G204. Genotypes G212, G220, G217, G215, and G213 showed low AMMI stability values (ASV), whereas genotypes G217, G220, G212, G211, and G219 showed low genotype selection index (GSI), indicating their better stability and adaptability to the test environments. The results indicated that genotypes G217, G219, G211, G213, and G220 combined both high grain yield and stability/adaptability under dry but irrigated and heat-prone environments. An in-depth analysis of the superior genotypes could help better understand the stress-adaptive traits that could be targeted to further increase durum wheat yield and stability under the changing climate.

Funder

African Development Bank

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3