Crop Domestication, Root Trait Syndromes, and Soil Nutrient Acquisition in Organic Agroecosystems: A Systematic Review

Author:

Isaac Marney E.,Nimmo Victoria,Gaudin Amélie C. M.,Leptin Andrea,Schmidt Jennifer Elise,Kallenbach Cynthia M.,Martin Adam,Entz Martin,Carkner Michelle,Rajcan Istvan,Boyle T. D.,Lu Xin

Abstract

Selecting crops that express certain reproductive, leaf, and root traits has formed detectable, albeit diverse, crop domestication syndromes. However, scientific and informal on-farm research has primarily focused on understanding and managing linkages between only certain domestication traits and yield. There is strong evidence suggesting that functional traits can be used to hypothesize and detect trade-offs, constraints, and synergies among crop yield and other aspects of crop biology and agroecosystem function. Comparisons in the functional traits of crops vs. wild plants has emerged as a critical avenue that has helped inform a better understanding of how plant domestication has reshaped relationships among yield and traits. For instance, recent research has shown domestication has led important economic crops to express extreme functional trait values among plants globally, with potentially major implications for yield stability, nutrient acquisition strategies, and the success of ecological nutrient management. Here, we present an evidence synthesis of domestication effects on crop root functional traits, and their hypothesized impact on nutrient acquisition strategies in organic and low input agroecosystems. Drawing on global trait databases and published datasets, we show detectable shifts in root trait strategies with domestication. Relationships between domestication syndromes in root traits and nutrient acquisition strategies in low input systems underscores the need for a shift in breeding paradigms for organic agriculture. This is increasingly important given efforts to achieve Sustainable Development Goal (SDG) targets of Zero Hunger via resilient agriculture practices such as ecological nutrient management and maintenance of genetic diversity.

Funder

Canada Research Chairs

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3