Shifts in plant functional trait dynamics in relation to soil microbiome in modern and wild barley

Author:

Kumar Amit1ORCID,Kuznetsova Olga2,Gschwendtner Silvia3ORCID,Chen Hao4,Alonso‐Crespo Inés M.2ORCID,Yusuf Mohammad1,Schulz Stefanie3ORCID,Bonkowski Michael4ORCID,Schloter Michael35ORCID,Temperton Vicky M.2ORCID

Affiliation:

1. Department of Biology College of Science, United Arab Emirates University Al Ain UAE

2. Institute of Ecology Leuphana University of Lüneburg Universitätsallee 1 Lüneburg Germany

3. Research Unit Comparative Microbiome Analysis Helmholtz Zentrum München Neuherberg Germany

4. Cologne Biocenter University of Cologne Zülpicher Straße 47b Cologne Germany

5. Chair for Soil Science Technische Universität München Freising Germany

Abstract

Societal Impact StatementUnderstanding domestication's impact on crop root traits and interactions with soil microbiomes is vital for improving crop resilience and agricultural sustainability. Using this knowledge to enhance root systems, reduce chemical inputs, and adapt crops to environmental stress will help to increase global food production, promote eco‐friendly farming, and mitigate the effects of climate change. Additionally, identifying microorganisms specific to plant species may help in biodiversity conservation. Advancing scientific understanding and educating future generations on the intricate relationships between plants, soil, and microorganisms is integral to developing innovative, sustainable agricultural practices and improved food security.Summary Domestication and intensive management practices have significantly shaped characteristics of modern crops. However, our understanding of domestication's impact had mainly focused on aboveground plant traits, neglecting root and rhizospheric traits, as well as trait–trait interactions and root‐microbial interactions. To address this knowledge gap, we grew modern (Hordeum vulgare L. var. Barke) and wild barley (Hordeum spontaneum K. Koch var. spontaneum) in large rhizoboxes. We manipulated the soil microbiome by comparing disturbed (sterilized soil inoculum, DSM) versus non‐disturbed (non‐sterilized inoculum, NSM) microbiome. Results showed that modern barley grew faster and increased organic‐carbon exudation (OCEXU) compared to wild barley. Both barley species exhibited accelerated root growth and enhanced OCEXU under DSM, indicating their ability to partially compensate and exploit the soil resources independently of microbes if need be. Plant trait network analysis revealed that modern barley had a denser, larger, and less modular network of microbes than wild barley indicating domestication's impact on trait–trait coordination. In addition, the relative abundance of bacteria did not vary between wild and modern barley rhizospheres; however, species‐specific unique bacteria were identified, with stronger effects under DSM. Overall, our findings highlight domestication‐driven shifts in root traits, trait coordination, and their modulation by the soil microbiome.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3