Local action of moderate heating and illumination induces propagation of hyperpolarization electrical signals in wheat plants

Author:

Yudina Lyubov,Sukhova Ekaterina,Popova Alyona,Zolin Yuriy,Abasheva Karina,Grebneva Kseniya,Sukhov Vladimir

Abstract

Electrical signals (ESs), which are generated in irritated zones of plants and propagate into their non-irritated parts, are hypothesized to be an important mechanism of a plant systemic response on the local action of adverse factors. This hypothesis is supported by influence of ESs on numerous physiological processes including expression of defense genes, production of stress phytohormones, changes in photosynthetic processes and transpiration, stimulation of respiration and others. However, there are several questions, which require solution to support the hypothesis. Particularly, the non-physiological stimuli (e.g., strong heating or burning) are often used for induction of ESs; in contrast, the ES induction under action of physiological stressors with moderate intensities requires additional investigations. Influence of long-term environmental factors on generation and propagation of ESs is also weakly investigated. In the current work, we investigated ESs induced by local action of the moderate heating and illumination in wheat plants under irrigated and drought conditions. It was shown that combination of the moderate heating (40°C) and illumination (blue light, 540 μmol m−2s−1) induced electrical signals which were mainly depolarization electrical signals near the irritation zone and hyperpolarization electrical signals (HESs) on the distance from this zone. The moderate soil drought did not influence HESs; in contrast, the strong soil drought significantly decreased amplitude of HESs. Finally, it was shown that the moderate heating could induce HESs without additional action of illumination. It was hypothesized that both hyperpolarization and depolarization ESs could be caused by the hydraulic wave.

Funder

Russian Science Foundation

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3