Agronomic Biofortification of Zinc in Pakistan: Status, Benefits, and Constraints

Author:

Rehman Abdul,Farooq Muhammad,Ullah Aman,Nadeem Faisal,Im Seon Young,Park Sang Koo,Lee Dong-Jin

Abstract

Micronutrient malnutrition (e.g., zinc) is one of the major causes of human disease burden in the developing world. Zinc (Zn) deficiency is highly prevalent in the Pakistani population (22.1%), particularly in women and children (under 5 years) due to low dietary Zn intake. In Pakistan, wheat is the primary staple food and is poor in bioavailable Zn. However, the number of malnourished populations has decreased over the last decade due to multiplied public awareness, accelerated use of Zn fertilizers (particularly in wheat and rice), initiation of several national/international research initiatives focusing on Zn biofortification in staple crops and availability of supplements and Zn fortified meals merchandise, nonetheless a large number of people are facing Zn or other micronutrient deficiencies in the country. There are few reports highlighting the significant increase in daily dietary Zn uptake in population consuming biofortified wheat (Zincol-2016) flour; indicating the positive prospect of biofortification interventions up scaling in lowering the risk of dietary Zn deficiency in rural and marginalized communities. Zinc fertilizer strategy has not only helped in enhancing the grain Zn concentration, but it also helped in improving crop yield with high economic return. In addition, Zn biofortified seeds have exhibited strong inherent ability to withstand abiotic stresses and produce higher grain yield under diverse climatic conditions. However, there are many constraints (soil, environment, genetic diversity, antinutrients concentration, socioeconomic factors etc.) that hinder the success of biofortification interventions. This review highlights the status of Zn deficiency in Pakistan, the success of agronomic and genetic biofortification interventions. It also discusses the economics of agronomic biofortification and cost effectiveness of Zn fertilization in field conditions in Pakistan and the potential of Zn biofortified seeds against abiotic stresses. Furthermore, it also highlights the constraints which limit the sustainability of biofortification interventions.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Reference67 articles.

1. Response of wheat to different doses of ZnSO4 under Thal desert environment40794085 AbbasG. HassanG. AliM. A. AslamM. AbbasZ. Pak J. Bot.422010

2. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains;Abid;Transgenic Res.,2017

3. Zinc status and its requirement by rural adults consuming wheat from control or zinc-treated fields;Ahsin;Environ. Geochem. Health,2020

4. Zinc application improves productivity and biofortification of mini core rice hybrids: Nuclear Institute of Agriculture, Tandojam, Pakistan7280 AkramM. A. DeparN. IrfanM. Pak. J. Agri. Agric. Eng. Vet. Sci.352019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3