Validation of satellite water products based on HYPERNETS in situ data using a Match-up Database (MDB) file structure

Author:

González Vilas Luis,Brando Vittorio E.,Concha Javier A.,Goyens Clèmence,Dogliotti Ana I.,Doxaran David,Dille Antoine,Van der Zande Dimitry

Abstract

A Match-up Database (MDB) file structure and tools were developed to ease the validation analysis of satellite water products and to improve the exchange and processing of match-up data from different sites, missions and atmospheric correction processors. In situ remote sensing reflectance (Rrs) measurements were available from the HYPSTAR® (HYperspectral Pointable System for Terrestrial and Aquatic Radiometry), a new automated hyperspectral radiometer. An MDB file is a NetCDF file containing all the potential match-ups between satellite and in situ data on a specific site and within a given time window. These files are generated and manipulated with three modules developed in Python to implement the validation protocols: extract satellite data, associate each extract with co-located in situ radiometry data, and then perform the validation analysis. This work provides details on the implementation of the open-source MDB file structure and tools. The approach is demonstrated by a multi-site matchup comparison based on satellite data from the Sentinel-2 MSI and Sentinel-3 OLCI sensors, and HYPSTAR® data acquired over six water sites with diverse optical regimes from February 2021 to March 2023.The analysis of Sentinel-3 OLCI matchups across the six sites shows consistency with previous comparisons based on AERONET-OC data over extended reflectance range. We evaluated Sentinel-2 MSI reflectance data corrected with two atmospheric correction processors (ACOLITE and C2RCC) over four sites with clear to highly turbid waters. Results showed that the performance of the processors depends on the optical regime of the sites. Overall, we proved the suitability of the open-source MDB-based approach to implement validation protocols and generate automated matchup analyses for different missions, processors and sites.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3