Author:
Ruddick Kevin G.,Brando Vittorio E.,Corizzi Alexandre,Dogliotti Ana I.,Doxaran David,Goyens Clémence,Kuusk Joel,Vanhellemont Quinten,Vansteenwegen Dieter,Bialek Agnieszka,De Vis Pieter,Lavigne Héloise,Beck Matthew,Flight Kenneth,Gammaru Anabel,González Vilas Luis,Laizans Kaspars,Ortenzio Francesca,Perna Pablo,Piegari Estefania,Rubinstein Lucas,Sinclair Morven,Van der Zande Dimitry
Abstract
This paper describes a prototype network of automated in situ measurements of hyperspectral water reflectance suitable for satellite validation and water quality monitoring. Radiometric validation of satellite-derived water reflectance is essential to ensure that only reliable data, e.g., for estimating water quality parameters such as chlorophyll a concentration, reach end-users. Analysis of the differences between satellite and in situ water reflectance measurements, particularly unmasked outliers, can provide recommendations on where satellite data processing algorithms need to be improved. In a massively multi-mission context, including Newspace constellations, hyperspectral missions and missions with broad spectral bands not designed for “water colour”, the advantage of hyperspectral over multispectral in situ measurements is clear. Two hyperspectral measurement systems, PANTHYR (based on the mature TRIOS/RAMSES radiometer) and HYPSTAR® (a newly designed radiometer), have been integrated here in the WATERHYPERNET network with SI-traceable calibration and characterisation. The systems have common data acquisition protocol, data processing and quality control. The choice of validation site and viewing geometry and installation considerations are described in detail. Three demonstration cases are described: 1. PANTHYR data from two sites are used to validate Sentinel-2/MSI (A&B); 2. HYPSTAR® data at six sites are used to validate Sentinel-3/OLCI (A&B); 3. PANTHYR and HYPSTAR® data in Belgian North Sea waters are used to monitor phytoplankton parameters, including Phaeocystis globosa, over two 5 month periods. Conclusion are drawn regarding the quality of Sentinel-2/MSI and Sentinel-3/OLCI data, including indications where improvements could be made. For example, a positive bias (mean difference) is found for ACOLITE_DSF processing of Sentinel-2 in clear waters (Acqua Alta) and clues are provided on how to improve this processing. The utility of these in situ measurements, even without accompanying hyperspectral satellite data, is demonstrated for phytoplankton monitoring. The future evolution of the WATERHYPERNET network is outlined, including geographical expansion, improvements to hardware reliability and to the measurement method (including uncertainty estimation) and plans for daily distribution of near real-time data.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献