A new framework for improving semantic segmentation in aerial imagery

Author:

He Shuke,Jin Chen,Shu Lisheng,He Xuzhi,Wang Mingyi,Liu Gang

Abstract

High spatial resolution (HSR) remote sensing imagery presents a rich tapestry of foreground-background intricacies, rendering semantic segmentation in aerial contexts a formidable and vital undertaking. At its core, this challenge revolves around two pivotal questions: 1) Mitigating Background Interference and Enhancing Foreground Clarity. 2) Accurate Segmentation in Dense Small Object Cluster. Conventional semantic segmentation methods primarily cater to the segmentation of large-scale objects in natural scenes, yet they often falter when confronted with aerial imagery’s characteristic traits such as vast background areas, diminutive foreground objects, and densely clustered targets. In response, we propose a novel semantic segmentation framework tailored to overcome these obstacles. To address the first challenge, we leverage PointFlow modules in tandem with the Foreground-Scene (F-S) module. PointFlow modules act as a barrier against extraneous background information, while the F-S module fosters a symbiotic relationship between the scene and foreground, enhancing clarity. For the second challenge, we adopt a dual-branch structure termed disentangled learning, comprising Foreground Precedence Estimation and Small Object Edge Alignment (SOEA). Our foreground saliency guided loss optimally directs the training process by prioritizing foreground examples and challenging background instances. Extensive experimentation on the iSAID and Vaihingen datasets validates the efficacy of our approach. Not only does our method surpass prevailing generic semantic segmentation techniques, but it also outperforms state-of-the-art remote sensing segmentation methods.

Publisher

Frontiers Media SA

Reference50 articles.

1. Segnet: a deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell.,2017

2. Roadtracer: automatic extraction of road networks from aerial images;Bastani,2018

3. Semantic image segmentation with deep convolutional nets and fully connected crfs;Chen,2015

4. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs;Chen;IEEE Trans. Pattern Anal. Mach. Intell.

5. Encoder-decoder with atrous separable convolution for semantic image segmentation;Chen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3