AerialFormer: Multi-Resolution Transformer for Aerial Image Segmentation

Author:

Hanyu Taisei1ORCID,Yamazaki Kashu1ORCID,Tran Minh1,McCann Roy A.1,Liao Haitao1,Rainwater Chase1,Adkins Meredith2ORCID,Cothren Jackson1ORCID,Le Ngan1

Affiliation:

1. College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA

2. Institute for Integrative and Innovative Research, University of Arkansas, Fayetteville, AR 72701, USA

Abstract

When performing remote sensing image segmentation, practitioners often encounter various challenges, such as a strong imbalance in the foreground–background, the presence of tiny objects, high object density, intra-class heterogeneity, and inter-class homogeneity. To overcome these challenges, this paper introduces AerialFormer, a hybrid model that strategically combines the strengths of Transformers and Convolutional Neural Networks (CNNs). AerialFormer features a CNN Stem module integrated to preserve low-level and high-resolution features, enhancing the model’s capability to process details of aerial imagery. The proposed AerialFormer is designed with a hierarchical structure, in which a Transformer encoder generates multi-scale features and a multi-dilated CNN (MDC) decoder aggregates the information from the multi-scale inputs. As a result, information is taken into account in both local and global contexts, so that powerful representations and high-resolution segmentation can be achieved. The proposed AerialFormer was benchmarked on three benchmark datasets, including iSAID, LoveDA, and Potsdam. Comprehensive experiments and extensive ablation studies show that the proposed AerialFormer remarkably outperforms state-of-the-art methods.

Funder

National Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3