Radiative Transfer Speed-Up Combining Optimal Spectral Sampling With a Machine Learning Approach

Author:

Mauceri Steffen,O’Dell Christopher W.,McGarragh Gregory,Natraj Vijay

Abstract

The Orbiting Carbon Observatories-2 and -3 make space-based measurements in the oxygen A-band and the weak and strong carbon dioxide (CO2) bands using the Atmospheric Carbon Observations from Space (ACOS) retrieval. Within ACOS, a Bayesian optimal estimation approach is employed to retrieve the column-averaged CO2 dry air mole fraction from these measurements. This retrieval requires a large number of polarized, multiple-scattering radiative transfer calculations for each iteration. These calculations take up the majority of the processing time for each retrieval and slow down the algorithm to the point that reprocessing data from the mission over multiple years becomes especially time consuming. To accelerate the radiative transfer model and, thereby, ease this bottleneck, we have developed a novel approach that enables modeling of the full spectra for the three OCO-2/3 instrument bands from radiances calculated at a small subset of monochromatic wavelengths. This allows for a reduction of the number of monochromatic calculations by a factor of 10, which can be achieved with radiance errors of less than 0.01% with respect to the existing algorithm and is easily tunable to a desired accuracy-speed trade-off. For the ACOS retrieval, this speeds up the over-retrievals by about a factor of two. The technique may be applicable to similar retrieval algorithms for other greenhouse gas sensors with large data volumes, such as GeoCarb, GOSAT-3, and CO2M.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optically thin atomic photochemistry;Astrochemical Modeling;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3