Surrogate models of radiative transfer codes for atmospheric trace gas retrievals from satellite observations

Author:

Brence JureORCID,Tanevski JovanORCID,Adams JenniferORCID,Malina EdwardORCID,Džeroski SašoORCID

Abstract

AbstractInversion of radiative transfer models (RTMs) is key to interpreting satellite observations of air quality and greenhouse gases, but is computationally expensive. Surrogate models that emulate the full forward physical RTM can speed up the simulation, reducing computational and timing costs and allowing the use of more advanced physics for trace gas retrievals. In this study, we present the development of surrogate models for two RTMs: the RemoTeC algorithm using the LINTRAN RTM and the SCIATRAN RTM. We estimate the intrinsic dimensionality of the input and output spaces and embed them in lower dimensional subspaces to facilitate the learning task. Two methods are tested for dimensionality reduction, autoencoders and principle component analysis (PCA), with PCA consistently outperforming autoencoders. Different sampling methods are employed for generating the training datasets: sampling focused on expected atmospheric parameters and latin hypercube sampling. The results show that models trained on the smaller (n = 1000) uniformly sampled dataset can perform as well as those trained on the larger (n = 50000), more focused dataset. Surrogate models for both datasets are able to accurately emulate Sentinel 5P spectra within a millisecond or less, as compared to the minutes or hours needed to simulate the full physical model. The SCIATRAN-trained forward surrogate models are able to generalize the emulation to a broader set of parameters and can be used for less constrained applications, while achieving a normalized RMSE of 7.3%. On the other hand, models trained on the LINTRAN dataset can completely replace the RTM simulation in more focused expected ranges of atmospheric parameters, as they achieve a normalized RMSE of 0.3%.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

European Commission

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3